Table of Contents

- **INTRODUCTION** 3
- **GENERAL INFORMATION** 5
 - Qualifications 6
 - Application Procedures/Filing Deadlines 6
 - Examination Schedule 6
- **REGISTERING FOR THE COMPUTER-BASED EXAM** 7
 - Eligibility 8
 - How to Register for the Exam 8
 - Special Accommodations Requirements 26
 - Rescheduling/Cancellation/Refunds 26
- **TAKING THE COMPUTER-BASED EXAM** 27
 - What to Bring 28
 - What to Expect 28
- **DESCRIPTION OF EXAMINATIONS** 32
 - Examination Validity 33
 - Council of Examiners (COE) 33
 - ASBOG Test Blueprints 33
 - Examination Development Procedures 33
 - Scoring Procedures 33
 - Passing Scores 35
 - Statistical Analyses 35
 - Examination Proctored Review and/or Manual Regrade 35
- **Appendix 1:** Glossary 37
- **Appendix 2:** FG and PG Test Blueprints 40
- **Appendix 3:** FG Sample Questions and Answer Key 45
- **Appendix 4:** PG Sample Questions and Answer Key 55
Introduction
The Association of State Boards of Geology (ASBOG®) is an organization through which its State Member Boards may act and counsel together to better perform their responsibilities. ASBOG provides a forum to promote, foster, and advance the common interests and purposes of its Member Boards. The supporting membership of ASBOG is its Member Boards. Member Boards are dues-paying State Boards or other legal entities constituted by States, Territories, and the District of Columbia of the United States of America to administer the registration/licensure of geologists.

One of ASBOG’s principal duties is to develop standardized written examinations to assess qualifications of applicants who seek licensure as professional geologists. The ASBOG National Geology Examination development and validation procedures are designed to maximize the fairness and quality of the examinations. State Member Boards of registration/licensure are provided with uniform examinations that are valid measures of competency related to the practice of the profession. This process benefits those candidates who are taking the examinations and enhances the protection of the general public.

The National Geology Examinations are administered in the spring and fall of each year. Currently, ASBOG provides its Member Boards with two multiple-choice examinations—the *Fundamentals of Geology (FG)* and the *Practice of Geology (PG)*. The FG and PG examinations have been developed to assess common knowledge and skills related to the practice of geology throughout the nation. The FG examination emphasizes knowledge and skills that are typically acquired in an academic setting and lead to a baccalaureate degree. The PG examination emphasizes skills and knowledge acquired or expanded in a practice or job setting. Individual Member Boards may require additional testing on local geology, statutes, rules, and regulations that address state-specific issues.

This ASBOG Examinee Candidate Handbook is the official guide to policies and procedures for the ASBOG National Geology Examinations. This guide will provide important information to exam candidates regarding scope; content and development of the licensure exams; a step-by-step guide to register and pay for the computer-based exams and select a testing location; and example practice questions to help prepare for the ASBOG National Geology Examinations.

Please note that ASBOG has not authorized use of its name by any commercial enterprise. ASBOG is not affiliated with, nor does it currently provide information for/to, or endorse, any examination preparation course(s), study guide/manuals/aid (i.e., flash cards), or publication other than its own Official ASBOG Fundamentals of Geology (FG) Prep Course. The ABSOG FG prep course brings together six experienced educators, who are professionally licensed, to review the eight content domains covered on the FG examination. Taking this course does not guarantee that candidates will pass the FG examination. However, upon completion of this course, candidates will be positioned for success, having received a comprehensive foundation from geologists adept in the test methods and subject matter presented in the FG examination, from which additional exam preparation efforts can be focused: https://asbogprep.getlearnworlds.com/

1 Italicized words here and elsewhere in this document, except for the opening sentence, refer to terms listed in the Glossary (Appendix 1). Some sentences are in italics for emphasis.
General Information
Qualifications

The purpose of registration/licensure is to safeguard life, health and property and to promote the public welfare. Evaluation of the qualifications of candidates who seek registration/licensure provides the first step toward ensuring that this objective is met. While examinations offer one means of measuring the competency levels of candidates, most jurisdictions also screen candidates on the basis of education and experience requirements set forth in State Laws, Rules, and Regulations. The requirements vary across the nation. As the examination shall be administered only to those candidates who have met the statutory and regulatory prerequisites of the State in which they are seeking registration/licensure, it is important that candidates contact the State Member Board office where they are seeking registration/licensure to obtain information with respect to the specific requirements for that State.

Application Procedures / Filing Deadlines

Application forms and instructional information for the examination are available from individual State Member Boards. You should be aware that examination requirements, filing deadlines, and fees vary from State to State. You are responsible for contacting the State Member Board Examination Administrator for this type of information. (Please note that some State Member Boards use a professional testing service in support of processing applications and distributing results.) You are encouraged to allow sufficient time to complete the application process and assemble required data, such as transcripts and letters of recommendation. The State Member Board Examination Administrator will notify you regarding your approval status (i.e., accept/reject).

Examination Schedule

The ASBOG National Geology Examinations are given during the spring and fall of each year. Candidates must contact the geology board for the state in which they wish to seek licensure regarding specific dates for licensure applications and submittal of related required credentials needed for approval to sit for the examination(s). Candidates should understand that each State Member Board has their own cut-off dates for submission of examination requests/approval. Contact information for the different State Member Boards can be found on the ASBOG website through this link:

https://asbog.org/state_boards.html

All ASBOG examinations are be administered by an Examination Administrator contracted to ASBOG using computer-based testing (CBT) facilities. The Examination Administrator contracted by ASBOG for 2023-2025 is Prometric LLC (Prometric).
Registering for the Computer-Based Exam
Eligibility

Eligibility to sit for the ASBOG National Licensure Examinations varies and is determined by each State Member Board. Candidates seeking licensure in Georgia, Minnesota, and Utah will have an additional step to register for the exams. Candidates from these states must first complete preregistration through the Prometric portal using this link:

All other candidates should first contact the geology board for the state in which they wish to seek licensure to start the application process. Contact information for the State Member Boards can be found on the ASBOG website through this link:

https://asbog.org/state_boards.html

How To Register For The Exam

Step 1
Once the State Member Board has approved and pre-registered a candidate to sit for an exam, the candidate will receive an email from registrations@isoqualitytesting.com that will contain instruction for how to register, pay and schedule their exam.

On the following page is an example of the email message that all candidates approved to sit for the exams will receive; this message provides instruction for candidates to follow through with scheduling and payment for the exam(s).
Dear @SMT_Lisanfpt @SMT_Lukasnfpt,

You have now been approved by "Client Name" to make an appointment to sit for your examination. Please proceed as follows:

1 -- Go to our home page: www.IQTTesting.com
2 -- Using the option “Exam Registration”
 Enter your Username and Password to login. These are:
 Username: aksdhkh@mmm.com
 Password: rqACFKFY
3 -- Select the Organization: “Client Name”
 Select the exam: “Exam Name”

After logging in, please follow the on-screen instructions for making an appointment.

Please note that you must test within this date range: 03/24/2023 to 03/24/2024.

Reschedule/Cancellation Policy: If you fail to show up for your examination at the scheduled time, do not have the proper identification, or do not have your admission document, you will not be allowed to sit for your exam. You will be considered a “No-Show”, your examination fees will be forfeited, and you will be required to re-register and pay all fees prior to sitting for the exam. However, if an issue arises that prohibits you from making it to your scheduled exam, you may reschedule prior to (5) calendar days before your scheduled exam date. You may be required to pay a rescheduling fee to process your request. If it is less than (5) calendar days, you will not be allowed to cancel or reschedule your exam unless one of the following 4 situations have occurred:

- Jury Duty
- Death in the immediate family
- Military Deployment
- Sickness

The immediate family is defined as a person’s grandparents, parents, spouses, siblings and children.

If you experience any of the above, you MUST provide IQT with proper documentation before being rescheduled to a new date. If none of the above are the reason for wanting to reschedule or cancel your exam less than 5 days prior to your exam date, then you will not be allowed to reschedule or cancel your exam. Please also note that if you do not show up, you will be considered a “No-Show”, your examination fees will be forfeited, and you will be required to re-register and pay all fees prior to sitting for the exam.

Result Letter: Please note that you MUST receive some sort of letter after completing the exam. Please do not leave the testing center until this has been given to you by the Proctor.

Should you require assistance, you can click on the “Contact Us” Tab on the Iso-Quality Testing, Inc. home page (www.isoqualitytesting.com) and send a message to customer service, or you may call (toll-free in USA and Canada) 1-866-773-1114, or (other countries) +1 727-733-1110.

Sincerely,

Iso-Quality Testing, Inc.
Registering for the Computer-Based Exam

Step 2
Once a candidate has received the above email, the candidate will be directed to the IQT website, www.iqttesting.com, to complete their registration and schedule to take the examination(s).

Once a candidate has made it to the IQT website, they will select the second option: Schedule/Reschedule and Exam.
Step 3
Candidates will then be directed to the Login screen. It is important to note that a candidate will not be able to log in unless they have been pre-registered for an exam with their State Member Board.

Candidates will enter the User ID and Password identified in their pre-registration email.

Once a candidate has entered the User ID and Password identified in the pre-registration email, they will click the Login button.
Step 4
From the IQT welcome screen, candidates will select from the drop down list the Organization Name and the Exam Title they have been pre-registered for by their Boards. This information can be found in the pre-registration email they received earlier (Step 1).
Step 5
Candidates will then be directed to the Candidate Profile screen. It is important that candidates verify all information on this page, as this information is used to populate the Admission Document and status letter. Security procedures do not allow candidates to change their name or email address. This ensures that the candidate who was pre-registered for an exam is the candidate who sits for the exam.

It is imperative that all candidates enter, verify, and correct the information on this page. If a candidate needs to change their name or email address, they should do so by contacting the Board Office where they were pre-registered.

Once a candidate has verified and/or corrected all information, the candidate will click the Next button.
Step 6
Candidates will need to complete the Pre-Scheduling survey, which will consist of a series of demographic questions regarding their educational experience. Candidates will be asked to provide the “Institution Code” for the college or university from which they received their geoscience degree(s). This information will be used only to provide institutions with aggregate data on how their students—on the average—performed on the National Geology Examination(s). Candidates who do not find their institution(s) on the Institution Codes List will use the code 9999.
Step 6 (continued)
Candidates will also pay their exam fee(s) and seat fee(s) during this registration process.

Prometric accepts payment online via MasterCard, VISA, and American Express. Fees for each attempt are as follows:

- Fundamentals of Geology (FG) $200
- Practice of Geology (PG) $250
- Seat Fee (for proctoring) $75/part

Note: Some State Member Board’s require candidates to pay a separate application fee as part of their State Board approval process to be qualified for seating for an ASBOG exam.
Step 7
Candidates will then be directed to the site scheduling screen. The candidate will choose the location, date, and time of their exam. Candidates may select any location in the United States and/or Canada to sit for the ASBOG exams. Test centers have limited capacity and seats are reserved on a first-come, first-served basis. Candidates should schedule their exams as soon as possible for the best scheduling availability. Candidates must schedule an appointment at least five business days before taking the exam.

This is a real time scheduling system, so once a candidate has selected a location, date, and time for their exam and clicks the next button, they are immediately confirmed for that location, date, and time.
Once candidates have selected a date and time for their exam, they will click the Next button.
Step 8
Once a candidate has selected the location, date, and time of their exam and clicked the next button, they will be directed to the Confirmation screen. The candidate must agree to the IQT EXAMINATION AGREEMENT prior to confirming their exam scheduling choice. Once a candidate clicks the submit button, their scheduled exam is confirmed and cannot be changed.
Candidates will need to check this box prior to proceeding with the confirmation.

Candidates will click submit and be directed to their Admission Document.
Step 9
Once a candidate has clicked the submit button on the Confirmation screen, they will be presented with their Receipt and Admission Document. The candidate will be immediately prompted to print this document as they will not be permitted entry to the testing center without this document and current, government-issued, photo ID. If the candidate loses or misplaces the Admission Document, they may log back into their account and print this document as many times as they deem necessary.

This completes the scheduling process. Candidates should read the Admission Document, as it contains all pertinent information relating to their scheduled exam.
Step 10
Receipt of Candidate Admission Letter
Following the successful registration and payment for the exam(s) and selection of a testing location, examinee candidates will receive Candidate Admission Letter via email from Prometric/Iso-Quality Testing (IQT). The letter will confirm your identity, the location of your Prometric testing center, the time of your appointment, and the exam you are scheduled to take. All candidates are encouraged to confirm that the first and last names printed on the Candidate Admission Letter match their government-issued ID. Candidates should bring this letter to the test center to avoid delays during the check in process.

On the following page is an example of the Candidate Admission Letter that all candidates will receive after they successfully register and pay for their exams:
Dear [FullName],

!!! IMPORTANT !!! IMPORTANT !!! IMPORTANT !!!
You must PRINT and bring THIS Candidate Admission Letter with you on the day of your examination. If you do not, you will be denied entry to your scheduled examination and any fees paid will be forfeited.

Congratulations! You have successfully registered to sit for the [ExamName] examination, in [English], on the IQT/Prometric computer-based testing network. Your appointment information to take the examination is as follows: [CandidateImage]

- **Candidate UserID:** [UserID]
- **Candidate Passcode:** [password]
- **Exam Date:** [strExamDateTime]
- **Exam Duration:** [ExamDuration] minutes
- **Test Center Location:** [SiteName]
- **Site Address:** [SiteAddress]
- **Site Directions:** [SiteDirections]

Please carefully read and note the following important additional information:

Rescheduling: If you fail to show up for your examination at the scheduled time, do not have the proper photo identification, or do not have your admission document, you will not be allowed to sit for your examination. You will be considered a “No-Show”, your examination fees will be forfeited, and you will be required to re-register and pay all fees prior to sitting for the exam. However, if your State Member Board permits reschedules and an issue arises that prohibits you from making it to your scheduled examination, you may reschedule prior to (5) calendar days before your scheduled examination date. **You may be required to pay a rescheduling fee to process your request.**

ASBOG serves as a connective link among the individual state geologic registration licensing boards for the planning and preparation of uniform procedures and the coordination of geologic protective measures for the general public.
Reschedule/Cancellation Policy

If it is less than (5) calendar days, you will not be allowed to cancel or reschedule your examination unless the following four situations have occurred:

1) Jury Duty
2) Death in the immediate family¹
3) Military Deployment
4) Sickness in the immediate family

The immediate family is defined as a person’s grandparents, parents, spouses, siblings and/or children.

If you experience any of the above, you MUST provide IQT with proper documentation before being rescheduled to a new date. Documentation must be submitted to IQT within 10 calendar days of your missed examination or it will not be considered for a reschedule.

If none of the above are the reason for wanting to reschedule or cancel your examination less than 5 days prior to your scheduled examination date, then you will not be allowed to reschedule or cancel your examination and if you do not show up, you will be considered a “No Show”, your examination fees will be forfeited, and you will be required to re-register and pay all fees prior to sitting for the examination.

Candidate Admission Letter: You MUST present this letter to the testing center in order to be admitted. Also, the Candidate UserID and Passcode printed above are required for you to login and start your examination.

Arriving for Your Appointment: Please arrive at the testing center A MINIMUM OF |ArriveMinutes| MINUTES BEFORE YOUR APPOINTMENT TIME. If you have any doubts about the location of the testing center, IQT strongly recommends that you go to MapQuest or Google Maps and print out a map to the location; or you may wish to drive to the center in advance (the evening prior, for example), to ensure you know where it is located. Test takers will be required to stand on the ‘stand here’ sign or ‘X’ in place on the floor, designating a safe distance away from the test center employee (where social distancing is in place according to the local government rules). Test takers will be asked to show arms and ankles, as well as empty their pockets from the agreed safe distance area.

Identification: You must present a VALID GOVERNMENT ISSUED PHOTO ID WITH SIGNATURE in order to be admitted to the examination. Approved forms for ID are: Driver’s License, Government Issued ID Card (must have photo and signature), Passport, Military ID Card. No other forms of identification will be accepted. The name on your admission letter must match the name on your photo ID.
Food and Drink: No food or drink will be permitted in the examination room for any reason.

Authorized Materials: Only reference materials on the IQT Authorized Materials List are allowed in the testing room. Calculators will be provided during administration of the examination. Candidates are asked to bring as few items as possible to the testing area. Jewelry such as a wedding ring, diamond stud earrings and/or religious jewelry is allowed. All other jewelry is not allowed to be worn in the testing area. If you have questions about what you are permitted to bring into the examination room, please email IQT at CBT@isoqualitytesting.com. You may also call at 1-866-773-1114 (USA) or 1-727-733-1110 (International callers). Only those materials that the EXAMINATION SPONSORING AGENCY notifies IQT as authorized will be permitted by the Proctor.

Examination Security: Failure to follow candidate instructions will result in your application being voided and forfeiture of your application fee. Conduct that results in violation of security or disrupts the administration of the examination could result in cancellation of your examination and dismissal from the testing center. In addition, your examination will be considered void and will not be scored. Examples of misconduct include, but are not limited to, the following:

- writing on anything other than the IQT Authorized Scratch Paper provided to you
- looking at another candidate’s computer monitor, or
- talking with other candidates anytime during the entire examination period.

Examination Site: While the site climate is controlled to the extent possible, be prepared for either warm or cool temperatures at the testing center in the event that you become uncomfortable. Cellular phones and beepers are prohibited in the testing area. The use of headphones inside the testing area is prohibited. Electrical outlets will not be available for any reason. Earplugs for sound suppression are allowed. No smoking or use of tobacco products will be allowed inside the testing area. You must vacate the testing area after you have completed the examination. If you require special assistance, you must
contact IQT at least one week in advance of the examination date and appropriate arrangements will be made. Due to limited parking facilities at some testing centers, please allow ample time to park and reach the testing area.

IQT Inclement Weather Policy: If your area is experiencing inclement weather, it is your responsibility to contact your testing center to confirm if it is closed or delayed in opening. Most likely there will be a voice message on the testing center’s phone system to notify candidates of any change in business hours during the inclement weather.

If you are unable to take your examination due to the inclement weather, you must contact IQT directly at 1-866-773-1114 or 1-727-733-1110 to reschedule your examination for a later date. There are no additional costs for such reschedules.

Thank you for registering on the IQT CBT Network to take your examination. If you have any questions or require assistance, please email IQT at CBT@isoqualitytesting.com. You may also call at 1-866-773-1114 (USA) or (727) 733-1110 (International callers).

All of us here at IQT wish you the best on your examination.

Sincerely,

ISO Quality Testing, Inc.

ASBOG serves as a connective link among the individual state geologic registration licensing boards for the planning and preparation of uniform procedures and the coordination of geologic protective measures for the general public.
Special Accommodations Requirements

Candidates with accommodation requests under the Americans with Disabilities Act (ADA), or other special accommodations, must apply for the accommodations upon application to sit for the Examination(s), and be approved by their State Member Board to take the Examination(s) with accommodations. The Candidate should make arrangements with their State Member Board for the accommodations no later than ninety (90) calendar days prior to the scheduled examination. The candidate must provide the State Member Board with a written statement from a doctor outlining the special needs and accommodations of the candidate. The State Member Board is responsible for the receipt, processing, review, verification and approval of all ADA and/or special accommodations being requested. For information and assistance regarding needs that fall under the ADA or for more information about disability rights, contact the ADA Information Line at 800/514-0301 (voice) or 800/514-0383 (TTY) or go to the ADA Website at: www.ada.gov.

The State Member Board will identify ADA candidates when uploading candidate authorization data to the Client Registration portal. When the candidate schedules their exam, they will be instructed to contact the Examination Administrator – Prometric – directly to make plans for the requested ADA accommodation. The Examination Administrator – Prometric – will then contact the State Member Board to request documentation for the disability and payment for the requested accommodations.

If special accommodation is not requested in advance, the Examination Administrator – Prometric – cannot guarantee the availability of accommodation on site at the time of testing. Please note that ASBOG does not alter, revise nor compromise the contents of its examinations in any way; adjustments are made only in the physical administration of the examinations (i.e. extra time; private room; etc.). The ASBOG examinations are administered in English only.

Rescheduling / Cancellation / Refunds

i. Candidates may reschedule or cancel their selected Examination(s) administration date after they register until 5 days prior to the examination date.

ii. Candidates who wish to reschedule their Examination(s) will do so through the candidate scheduling portal.

iii. For cancellations, examination and seat fees will be refunded, and a $50 cancellation fee will be assessed. For reschedules, exam and seat fees will be forwarded to a future exam date, and a $50 reschedule fee will be assessed.

iv. Candidates who cancel their Examination(s) will need to contact their respective State Member Board and request to be put on the eligibility list for the next scheduled exam.

v. Candidates that do not cancel or reschedule and do not show up for the Examination(s) will be considered “no-shows” and will forfeit their exam and seat fees.

vi. Candidates that have an emergency request for cancellation within 5 days of the exam date will be handled on a case-by-case basis (documentation justifying the requested reschedule will be required).

vii. Local/Regional/National Disruption: The Examination Administrator – Prometric – will contact ASBOG immediately if a testing center is not able to open due to weather or other force majeure circumstances. ASBOG will then contact the State Member Board to inform them about the impact to the candidates. The Examination Administrator will work with ASBOG to establish a reschedule date for the impacted candidates.
Taking the Computer-Based Exam
What to Bring

All examinee candidates must bring a valid government-issued photo ID with signature in order to be admitted to the examination. Approved forms of ID include:

• Driver’s License
• Government Issued ID Card (must have photo and signature)
• Passport
• U.S. Military ID.

No digital IDs or other forms of identification will be accepted. The first and last name on your admission letter must match the name on your photo IDs.

The FG and PG examinations are closed-book examinations. Only the following items are allowed in the testing room:

• The IDs used during the admission process
• Non-QWERTY-calculator (without the cover)
• Key to your test center locker
• Eyeglasses (without the case)
• Light sweater or jacket

Items prohibited in the testing room include but are not limited to cell phones, handheld computers/personal digital assistants (PDAs) or other electronic devices, alpha programmable calculators, camera, scanning pens, fitness trackers, pagers, watches, wallets, purses, hats and other head coverings (unless they qualify as religious apparel), bags, coats, books, notes, food, and beverages. Thumbtacks, cardboard, meridian stereographic nets and tracing paper are not necessary and will not be allowed in the testing room. Violation of any of the above-mentioned prohibitions will result in immediate expulsion from the examination site and forfeiture of examination privileges (examination will not be scored) and fees.

What to Expect

Check-In: Candidates are instructed to arrive at least 30 minutes before the scheduled exam. A Prometric representative will confirm that the only items in your possession are ones allowed into the testing area. Candidates will be provided a locker to store all belongings not permitted in the testing room in a designated area outside of the testing room. Candidates must turn off all electronic devices before storing them in the locker.

After candidates complete the check-in process, they will be escorted into the testing area, where a proctor will confirm their identity. After verifying their identity and the exam that will be taken, the proctor will answer any questions you might have and escort you to your workstation and start the exam. During the examination, candidates will be allowed to use the bathroom in the testing facility. The bathrooms will be in the proctored area and candidates will not have access to their locker during a bathroom break.

DAY OF THE EXAM

☒ Candidate Admission Letter
☒ Acceptable form of identification
☒ Approved comfort items

Here is a link to a video that will provide candidates with a detailed overview of what to expect during their upcoming visit to a Prometric test center:

https://www.prometric.com/test-takers/what-expect
Additional information on Prometric test center security is provided through this link:

https://www.prometric.com/test-center-security

Click on this link to get a preview of the CBT testing environment:

Exam Administration: Candidates will be required to review and agree to comply with ASBOG’s *Statement of Examination Compliance*. This Statement will appear onscreen prior to beginning your exam. Candidates must indicate their agreement to comply with the Statement by providing a digital signature before the testing begins. If a candidate does not accept the terms or if they click “no,” the exam will end and the seat and exam fees will be forfeited.

Execution of the *Statement of Examination Compliance* confirms that the candidate has read, understands, and agrees to the provisions outlined therein and acknowledges that any breach in examination security/compliance shall include, but is not limited to, expulsion from the examination testing center, voiding of the examination, and forfeiture of all seat and examination fees. Further, the candidate pledges to neither give, use, obtain, attempt to obtain by any means, nor receive information concerning the whole or any part of an examination (individual examination problems, questions, solutions, or answers), nor to transmit such to any third party, before, during, or after an Examination, whether orally, in writing, by telephone, or on other forms of social media, or otherwise.

After agreeing to comply with the Statement of Examination Compliance, candidates will be provided a tutorial to review how to advance through the exam questions, flag items (bookmark) for review, and do other exam-related tasks. Although candidates are allowed to bring their own non-QWERTY calculator, an electronic scientific calculator will also be provided during the examination. Candidates should notify the test administrator immediately if they experience any problems with the computer or software or encounter any other issue. The test administrator is not allowed to answer questions related to exam content.

Exam Format: The Fundamentals of Geology Examination (total questions = 140) is administered in a four-hour session. The Practice of Geology Examination (total questions = 110) is also administered during a four-hour session. The FG and PG are separate examinations, and scores are reported for each. Different forms of the examinations are constructed for each administration. All questions on the examinations are in a traditional multiple-choice format.

Examination items (questions or problems) are generally organized with an introductory statement (the stem) followed by four options (choices to finish the statement in the stem or answers to the problem). In evaluating options, candidates should read all options and then select the best or most appropriate answer from the options given. You must select one of the options given, even if there might be a better response to a question that is not included among any of the options given. **There is no penalty for guessing;** therefore, it is to the candidate’s advantage to answer each question on the examination.
Candidate Question Comment Form: ASBOG is always working to improve the quality and reliability of its examinations. Although each examination has gone through an extensive review process by Subject Matter Experts (SMEs) during the Council of Examiners (COE) Workshops, ASBOG encourages candidates to provide comments about specific questions by clicking the Question Comment button while taking the exam. Candidate comments become part of the examination review process during the post-examination COE Workshop. Candidate comments are anonymous and used only to improve the quality of the examination questions. To ensure that there is sufficient time to complete the examination, candidates are reminded to complete the examination first. Any questions candidates want to review after completing the exam or provide feedback should be bookmarked for later review and/or addition of comments.

Exam Irregularities: Fraud, deceit, dishonesty, unprofessional behavior, and other irregular behavior in connection with taking the ASBOG exam(s) are strictly prohibited. The test administrator is authorized to take appropriate action to investigate, stop, or correct any observed or suspected irregular behavior, including discharging the candidate from the test center and confiscating prohibited devices or materials. If a candidate is involved in an exam irregularity, results of exam may be invalidated, the candidate’s licensing board may be notified, exam and seat fees will be forfeited, and the candidate might be restricted for future testing.

The following actions/behaviors constitute, in part, prohibited conduct at the examination testing center:

- Impersonating an examination candidate or using false identification to take an examination. Only the person named on the examination application/answer sheet is authorized to take the examination, and his/her correct name must be signed on the examination;
- Possessing prohibited items;
- Copying, recording, taking pictures of, or transmitting examination questions in any form to another person or device or any action taken to reveal the contents of examinations in whole or in part is prohibited;
- Looking at another examinee’s answer sheet or test booklet or giving oral or written assistance to another candidate during administration of the examination;
- Disrupting other examinees or creating safety concerns; and
- Exhibiting irrational or disruptive behavior at the examination site at any time.

Exam Results: Exam results will be available to candidates within sixty (60) days of taking the examinations. Candidates will receive an email from Prometric indicating PASS or FAIL and/or notification from the candidate’s state geology board. No scores or additional information will be provided to the candidates from Prometric.

ASBOG will also release the examination results.
directly to the State Member Board’s within sixty (60) days of the examination date. The State Member Board’s determine what additional information they may provide to their candidates regarding the exam results. **ASBOG will not release examination results directly to candidates.**
Description of Examinations
Examination Validity

The FG and PG Examinations are developed following guidelines established in the Standards for Educational and Psychological Testing (1999) published by the American Educational Research Association, the American Psychological Association, and the National Council on Measurement in Education. The procedures are designed to maximize the fairness and quality of the examinations.

Council of Examiners (COE)

A committee of professional geologists serves as Subject Matter Experts (SMEs) on the Council of Examiners (COE). These SMEs represent the profession in terms of geography, ethnicity, gender, age, and area of practice. They supply the expertise that is essential in developing fair and impartial examinations for measuring competency within the profession.

SMEs attend two COE examination development and validation workshops each year. The COE Workshops are held shortly after the examinations have been administered so that the COE can evaluate statistical information and candidates’ comments related to the examinations. The process is designed to maximize the fairness and quality of the examinations as measures of competency.

Examination questions are: (1) based on the results of a Task Analysis Survey (TAS), and are, therefore, representative of the important tasks needed for competent practice in the profession; and (2) written and reviewed by the COE. Statistical analyses are also reviewed by the COE so that any substandard items can be eliminated before generating candidates’ final scores. The following sections further outline the process used in developing and validating the FG and PG Examinations.

ASBOG Test Blueprints

ASBOG conducts a TAS of the profession approximately every five to eight years to maximize the relevance of the examinations for candidates seeking licensure as professional geologists. The TAS is used to verify those tasks performed by the profession related to public protection. The findings are used to develop test blueprints (test specifications, content outlines) for constructing examinations and writing questions. The test blueprints list the geologic tasks, and the number of questions for each geologic task, to be included in both the FG and PG examinations. The COE reviews examination questions to verify that each question accurately reflects one or more of the tasks listed in the test blueprints.

The FG and PG test blueprints specify the domains/content areas for each examination. The relative importance of different content areas can be determined by reviewing the test blueprints shown in Appendix 2. The construction of the questions differs between the FG and PG examinations. The FG examination emphasizes knowledge and skills that are typically acquired in an academic setting and lead to a baccalaureate degree. The PG examination emphasizes skills and knowledge acquired or expanded in a practice or job setting.

Examination Development Procedures

Professional geologists (SMEs) have spent a considerable amount of time developing the FG and PG Examinations as fair measures of professional competence. As mentioned, questions on the examinations are reviewed by SMEs during regularly scheduled COE Workshops. These SMEs review statistical results for each item as well as written feedback from candidates who have just taken the examinations. This information is extremely valuable in evaluating the accuracy and fairness of each item in the examinations. Both ASBOG and the individual...
Description of Examinations

State Member Boards are continually working to improve the quality of the examinations as fair measures of an individual’s competence to practice before the public. The following paragraphs provide more detail regarding the development of the ASBOG National Geology Examinations.

Each FG and PG Examination question written by the SMEs is subjected to a minimum of four peer reviews.

- The first peer review occurs during the development of the question. During an item writing Workshop, each question is written by one or more members of the COE. Each new question is then reviewed independently by three other members of the COE. The purpose of the peer review process is to verify that the keyed answer is the one and only correct answer. This process is also used to make sure that the question is clear and is appropriate for use on the examination.

- All new questions that are accepted are entered into the ASBOG Examination Item Bank and subjected to an additional peer review at a subsequent COE Workshop. This peer review is completed by multiple SMEs at a COE workshop when it is included in the examination, which is reviewed in its entirety before the actual administration.

- Another “external” review occurs after the administration of the examinations. ASBOG encourages candidates to provide comments about specific questions while taking the examinations. Candidate comments become part of the examination review process during the post-examination COE Workshop. The COE reviews all new items and also any items that exhibit unusual statistical properties (i.e., difficult items, items with negative correlations). This review process makes it possible to improve the accuracy of the questions across time.

If the SMEs deem that a particular question has no correct answer (based on candidate comments, statistical information, or an evaluation of the accuracy of the question), then the item is not scored. Candidates will not be given credit for an item which has been deemed to have no correct answer. If the SMEs deem that a particular question has two correct answers (i.e., is a double-keyed question), then candidates who select either answer will be given credit. This process enhances the fairness of the examinations because substandard items (that have no correct answers) are eliminated before calculating candidates’ final scores.

Scoring Procedures

Raw scores are calculated by summing the number of correct responses for each candidate. Credit is given for correct responses, while no points are received for incorrect responses. Note that all blank responses (i.e., omitted questions) are scored as incorrect responses. There is no penalty for guessing; therefore, it is to your advantage to answer all questions in the exams.

To ensure national uniformity, ASBOG provides each jurisdiction with a nationally recommended passing score. A scaled score of 70 has been established as a standard of minimum competency and 100 is the highest score possible. Failing scaled scores range from 0 (no correct responses) to 69 (highest failing score). However, the legal authority for making registration/licensure decisions rests solely with the individual jurisdictions and not with ASBOG.

Candidates who fail the examinations receive feedback on their performance levels for the content domains listed in the FG and PG Test Blueprints. A “+” indicates acceptable performance in a particular content domain, whereas a “-” shows substandard performance. The
feedback is designed to assist candidates in evaluating their proficiency levels in preparation for subsequent examinations.

Passing Scores

The passing scores on the ASBOG FG and PG Examinations reflect minimum competency and are determined using a criterion-referenced procedure which measures a candidate’s performance based on a standard established by the COE. The COE evaluates the difficulty levels of the examination items in relation to minimum competency. Passing scores are adjusted (scaled) based on the difficulty level of each question in the examination so that candidates have the same probability of passing any version of the examinations.

ASBOG does **NOT** use “fixed-percentage” passing scores such as 70 or 75 percent correct because they fail to consider the difficulty levels of the questions in an examination and their relationship to minimum competency. Similarly, ASBOG avoids “grading on the curve” because registration/licensure is designed to ensure that practitioners possess enough knowledge to perform professional activities in a way that protects the public welfare. The key issue is whether candidates are competent to practice individually and not whether they are competent compared to other candidates.

Statistical Analyses

Statistical analyses are conducted on each form of the FG and PG Examinations. The statistics are valuable in evaluating the performance of the examinations (i.e., estimated reliability, mean, standard error of measurement etc.). The statistical results indicate whether the examinations are reliable and performing well.

The statistical analyses are also useful for isolating items that possess unusual statistical properties (i.e., very difficult, negative correlations). Items that possess negative correlations reveal that candidates with high test scores did poorer on these items compared to candidates with low test scores. Any items that exhibit negative correlations are reviewed during the workshop (by the SMEs) before scores are finalized and distributed to the State Member Board Examination Administrators.

Sample questions for the FG and PG Examinations are presented in Appendix 3 and 4, respectively. The sample questions do not make up complete examinations; however, they do represent the general content areas and formats. They are presented herein as a guide for your preparation for the examinations. The FG and PG Examinations measure some of the same competencies related to the practice of geology, but construction of the questions differs between the two levels. FG questions are designed primarily to recall factual information; the PG questions are focused on candidates’ competencies to apply the basic principles of geology, based mainly on work experience.

Examination Proctored Review and/or Manual Regrade

ASBOG does not independently conduct or provide for post-examination manual regrades or proctored Reviews. If a State Member Board is not mandated by law to provide these services, then it is up to the individual State Member Board to establish a policy for such services (e.g., to provide them or not) if they so desire. In this light, it is up to the State Member Board’s discretion. ASBOG only responds to such requests from the State Member Boards to assist them if they are tasked to provide these services. The prescribed fee(s) for a post-examination manual re-grade or proctored review shall be paid by the requesting candidate and must accompany the request. Only one post-examination manual regrade and/or proctored review will be allowed for each candidate per part, per examination administration.
Manual Regrade: The sole purpose of the manual regrade is to verify the accuracy of a candidate’s machine-graded score. The request for a manual regrade does not guarantee that the candidate will receive additional credit and/or a revised grade.

The candidate will initiate this request through their State Member Board within 30 calendar days after releasing the exam results to the State Member Boards. The State Member Board will then notify ASBOG of the request service. ASBOG will contact the Examination Administrator about the request. The Examination Administrator’s operations team will conduct a manual comparison of the candidate responses and the answer key for the examination in order to assure the accuracy of the reported score. Then, a second member of the Examination Administrator’s operations team will perform the manual comparison again. Both manual comparisons should reflect the same score. The manual regrade score is sent to ASBOG for release to the State Member Board.

The fee for the manual regrade is $75 and will be paid by the Candidate to the ASBOG prior to the regrade being completed.

Proctored Reviews: Candidates seeking a proctored review will initiate this request through their State Member Board. The State Member Board will then notify ASBOG of the requested service. ASBOG will contact the Examination Administrator about the request and the Examination Administrator will contact the State Member Board directly with logistical instruction regarding the proctored review. The Examination Administrator will work with the State Member Board to provide access to the exam form for proctored reviews at the nearest available Examination Administrator testing facility to the candidate or at the Board’s office, whichever is preferred. If the review is conducted at the Board office, a Board Administrator will be responsible for providing a computer monitor for the candidate to review their form and a proctor to provide oversight for the review.

The fee for the proctored review is $75 and will be paid by the Candidate to the ASBOG prior to the regrade being completed.
Appendix 1: Glossary
Candidate Comment Forms:
Forms provided to examination candidates as part of the examination process to allow for feedback to ASBOG. The Fundamentals of Geology (FG) forms are yellow and the Practice of Geology (PG) forms are green. Valid, written comments from a candidate who has already taken the Examinations are always welcome and may become a part of the examination review process during the post-examination Council of Examiners (COE) Workshop. Candidate comments are anonymous and used only to improve the quality of the examination items (questions).

COE:
See Council of Examiners.

Council of Examiners (COE):
ASBOG National Examination Committee composed of selected individuals who are Subject Matter Experts (SMEs) in their respective domains and who represent a cross-section of geography, gender, area of practice (specialty), experience, and ethnicity. The COE meets twice yearly as part of the ASBOG COE Workshops, usually about three weeks after the administration of the FG and PG examinations; one of the two Workshops is held in conjunction with the ASBOG Annual Business Meeting each fall.

Criterion-Referenced Approach:
Psychometric procedure used to determine passing scores that reflect a standard of minimum competency.

Domains/Content Areas:
The subject matter within a profession; for example, geophysics, hydrogeology or field methods in the profession of geology.

Examination Administrator:
The State Member Board, or its authorized testing service, actually responsible for administering (proctoring) the examination. Some State boards use their own staff to proctor the examination; some have a State Department of Testing (bureau/agency), and some use a professional testing service. See Proctor.

Examination Item:
Question or problem used in an examination.

Examination Item Bank:
Data base of examination items which are stored on computer after acceptance by the COE.

Fundamentals Of Geology (FG) Examination:
ASBOG National Examination with items related to knowledge and skills acquired in an academic setting that leads to a baccalaureate degree; consists of 140 questions.

Keyed Answer (KEY):
The one and only correct answer. A new question, developed by one or more of the members of the COE, is independently reviewed/critiqued by three other members (SMEs). The peer review process verifies the keyed answer. The review also focuses on the quality of the item to ensure the question is clear and is appropriate for use on the examination.

Minimum Competency:
The standard used in establishing passing scores on ASBOG Examinations.

Proctor:
Individual(s) administering the examination(s). See Examination Administrator.

Practice Of Geology (PG) Examination:
ASBOG National Examination with items that assess skills and knowledge acquired or expanded through employment, typically after five years of work experience; consists of 110 questions.
Raw Score:
Unadjusted score on an examination based on the total number of correct responses. If the COE Subject Matter Experts (SMEs) deem a particular question to have no correct answer (based on candidate comments, statistical information, evaluation of the accuracy of the question, etc.), then that item is not scored (i.e., the FG examination would be graded on the basis of 139 instead of 140 questions. Similarly, the PG examination would be scored on the basis of 109, not 110 questions.) Candidates will not be given credit for an item which has been deemed to have no correct answer. If the SMEs deem that a particular question has two correct answers (i.e., is a double-keyed question), then candidates who select either answer will be given credit. This process enhances the fairness of the examinations because substandard items (that have no correct answers) are eliminated before calculating candidates’ final scores.

Scaled Score:
Adjusted score, based on the average difficulty level of each examination (FG and PG). A scaled score of 70 has been established as a standard of minimum competency. On all forms of the ASBOG National Examinations, a scaled score of 70 is the minimum score required to pass and 100 is the highest score possible. Failing scaled scores range between 0 (no correct responses) and 69 (highest failing score).

SME:
See Subject Matter Expert.

Stem:
The introductory portion of an examination item that states a question, states a problem, or presents an incomplete statement.

Subject Matter Expert (SMES):
A geologist who serves on the ASBOG Council of Examiners; SMEs represent the profession in terms of geography, ethnicity, gender, age, and area of practice.

Task Analysis Survey (TAS):
A survey prepared and conducted by the Council of Examiners (COE) to determine the geologic tasks performed by geologists. The survey focuses on tasks that involve protection of the health, safety and welfare of the public. The survey form is mailed to licensed geologists selected at random from the lists of registered/licensed geologists provided to ASBOG by those Member Board States with geologist registration/licensure laws. (Note: The 2015 TAS was distributed in 29 states.) Geologists rate the importance of each task in protecting the health, safety and welfare of the public. Results from the TAS determine the number of questions from each geologic task category to be included in both the FG and PG Examinations.

Test Blueprint:
An outline that lists the domains/content areas (subject matter) and their percentage weights in the FG and PG Examinations.
Appendix 2: FG and PG Test Blueprints
A. GENERAL GEOLOGY AND GEOLOGICAL INVESTIGATIONS

Knowledge Base

Surface and subsurface exploration techniques and interpretations; Geologic and geophysical tools, application, and interpretation; Earth processes; Surface and subsurface mapping and map applications; Geologic section construction; Photogrammetry, terrain measurement, GPS, and GIS; Remote sensing; Image analysis and interpretation; Scale and scale analysis; Measurement theory, accuracy and precision; Geostatistics; Documentation and record keeping; Modeling concepts; Professionalism and ethics; Project planning, management, organization, and economics; QA/QC (FG/PG)

1. Plan and conduct geological investigations considering public health, safety, and welfare, the environment, regulations, and Quality Assurance/Quality Control (QA/QC).

2. Compile and organize available information to plan geological investigations.

3. Collect, describe, and record new geological and geophysical data.

4. Determine positions, scales, distances, and elevations from remote sensing, imagery, surveys, sections, maps, and GIS.

5. Prepare, analyze, and interpret logs, sections, maps, and other graphics derived from field and laboratory investigations.

This ASBOG® Fundamentals of Geology (FG) and Practice of Geology (PG) Examination Knowledge Base consists of eight domains which collectively encompass the scientific and practical knowledge needed to become a licensed professional geologist. The Knowledge Base for Domain A encapsulates the general principles and knowledge of general geology and field methods which provide the foundation for the other seven domains; i.e., the other seven domains implicitly include the Knowledge Base for Domain A. Within each domain, the order in which the items are listed does not reflect their relative importance.

<table>
<thead>
<tr>
<th>Content Domains</th>
<th>FG %</th>
<th>PG %</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. General and Field Geology</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>B. Mineralogy, Petrology, and Geochemistry</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>C. Sedimentology, Stratigraphy, and Paleontology</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>D. Geomorphology, Surficial Processes, and Quaternary Geology</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>E. Structure, Tectonics, and Seismology</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>F. Hydrogeology</td>
<td>13</td>
<td>22</td>
</tr>
<tr>
<td>G. Engineering Geology</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>H. Economic Geology and Energy Resources</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>TOTALS</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
B. MINERALOGY, PETROLOGY, AND GEOCHEMISTRY

Knowledge Base

Rock and mineral identification; Crystal symmetry, systems, and forms; Igneous rocks and processes; Sedimentary rocks and processes; Metamorphic rocks and processes; Geochemical reactions and diagenesis; QA/QC (FG/PG)

Project planning, management, organization, and economics (PG)

6. Plan and conduct mineralogic, petrologic, and geochemical investigations, including the use of field, laboratory, and analytical techniques.

7. Identify minerals and rocks and their characteristics.

8. Identify and interpret rock and mineral sequences and associations, and their genesis.

9. Evaluate geochemical and isotopic data and construct geochemical models related to rocks and minerals.

10. Determine type, degree, and effects of rock and mineral alteration.

C. SEDIMENTOLOGY, STRATIGRAPHY, AND PALEONTOLOGY

Knowledge Base

Stratigraphic principles; Weathering, erosion, transport, and deposition; Depositional environments; Facies analysis; Basin analysis; Sedimentary structures; Diagenesis; Geologic time; Geochronology; Fossil record and evolution; QA/QC (FG/PG)

Project planning, management, organization, and economics (PG)

11. Plan and conduct sedimentologic, stratigraphic, or paleontologic investigations, including the use of field, laboratory, and analytical techniques.

12. Select and apply appropriate stratigraphic nomenclature and establish correlations.

13. Identify and interpret sedimentary processes and structures, depositional environments, sediment provenance, and geochemical and climatic cycles.

14. Identify and interpret sediment and/or rock sequences, positions, and ages, and interpret sequence stratigraphy.

15. Identify fossils and interpret fossil assemblages for age, paleoenvironmental interpretations, and/or stratigraphic correlations.

D. GEOMORPHOLOGY, SURFICIAL PROCESSES, AND QUATERNARY GEOLOGY

Knowledge Base

Geomorphic processes; Landform analysis techniques; Sea and lake level change; Glaciation; Weathering; Sediment transport; Groundwater and surface water; Low temperature geochemistry; Human-land interaction; Soil development and classification; Remote sensing; GIS; QA/QC (FG/PG)

Project planning, management, organization, and economics (PG)

16. Plan and conduct geomorphic investigations, including the use of field, laboratory, and analytical techniques.

17. Identify, classify, and interpret landforms, surficial materials, and processes.

18. Determine absolute or relative age
relationships of landforms, sediments, and soils.

19. Evaluate geomorphic processes and development of landforms, sediments, and soils, including watershed processes.

20. Apply remote sensing and GIS techniques to interpret geomorphic conditions and processes.

E. STRUCTURE, TECTONICS, AND SEISMOLOGY

Knowledge Base

Fractures, faults, and folds; Rock fabric; Rock mechanics; Structural analysis; Plate tectonics; Tectonic regimes; Volcanism; Structural and seismic history; Paleoseismology; Earthquake processes; QA/QC (FG/PG)

Project planning, management, organization, and economics (PG)

21. Plan and conduct structural, tectonic, or seismic investigations, including the use of field, laboratory, and analytical techniques.

22. Identify and define structural features and relationships to construct and interpret cross sections and structural projections, and perform statistical analyses.

23. Interpret deformational history through structural and tectonic analyses.

24. Develop and apply tectonic models to identify geologic processes and history.

25. Evaluate earthquake mechanisms and paleoseismic history.

F. HYDROGEOLOGY

Knowledge Base

Groundwater and surface water systems and processes; Aquifer characterization; Hydrogeologic modeling; Low temperature aqueous geochemistry; Contaminant transport and geochemistry; Isotopic and tracer studies; Hydraulic properties of fluids and earth materials; Site investigation methods, tools, and applications; Geophysical techniques; Landform analysis; Weathering; QA/QC (FG/PG)

Well drilling; Well design and construction; Soil and water remediation techniques; Water resources management and protection; Project planning, management, organization, and economics (PG)

26. Plan and conduct hydrogeological, geochemical, and contaminant investigations, including the use of field, laboratory, and analytical techniques.

27. Define and characterize hydraulic properties of vadose and saturated zones.

28. Design groundwater monitoring, observation, extraction, production, or injection wells.

29. Evaluate water resources, assess aquifer yield, and determine sustainability.

30. Characterize soil and water quality, and assess chemical fate and transport.

31. Manage, develop, protect, or remediate surface water or groundwater resources.
G. ENGINEERING GEOLOGY

Knowledge Base

Landform analysis techniques; Soil and rock weathering; Groundwater and surface water systems and processes; Low temperature geochemistry; Human-land interaction; Soil and rock mechanics; Soil and rock classification and engineering properties; Geologic hazards; Hazard and risk analyses; Cost/benefit analyses; Site investigation methods, tools, and applications; Geophysical techniques; QA/QC (FG/PG)

Land restoration and hazard mitigation; Mine closure; Image analysis and interpretation; Remote sensing; GIS; Earth and rock construction methods; In-situ and laboratory testing; Project planning, management, organization, and economics (PG)

32. Plan and conduct engineering geological investigations, including the use of field and laboratory methods.

33. Identify and characterize physical and index properties of earth materials.

34. Provide recommendations for engineering design, land use decisions, environmental restoration, and watershed management.

35. Identify, map, and evaluate geologic hazards and processes.

36. Interpret land use, landforms, and geological site characteristics using remote sensing data, maps, records, and GIS.

37. Develop plans, interpretations, and recommendations for ground behavior during infrastructure development or hazard mitigation.

H. ECONOMIC GEOLOGY AND ENERGY RESOURCES

Knowledge Base

Exploration and development techniques; Geophysical techniques; Petrophysical techniques; Geochemical analysis; Geostatistical analysis; Mineralization processes; Characteristics of mineral deposits; Energy resource systems; Characteristics of hydrocarbon traps; Industrial minerals, coal, and earth materials; Exploration risk and economics; Resource/reserve assessment; Safety hazards and risk analysis; Professionalism and ethics; QA/QC (FG/PG)

Exploration drilling techniques; Drill program design and management; Assaying; Land restoration and hazard mitigation; Mine and well decommissioning; Project planning, management, organization, and economics (PG)

38. Plan and conduct resource exploration, evaluation, and reclamation programs, including the use of conceptual models, and field, laboratory, and analytical techniques.

39. Collect and interpret data necessary to locate mineral or energy resources.

40. Determine the presence and distribution of resources based on surface and subsurface data.

41. Perform economic evaluation and reserve assessment.

42. Calculate quantity and quality of resources.

43. Conduct geological studies for design, abandonment, closure, waste management, and reclamation and restoration of energy development or mineral extraction operations.
Appendix 3: FG Sample Questions and Answer Key
1. When water contacts pyrite at the earth’s surface, the runoff is commonly:
 A) acidic
 B) basic
 C) oxygenated
 D) nitrogen-rich

2. What is the correct order of the ages of the units from the oldest to the youngest on the geologic map in Figure 13?
 A. Aa, Fo, Mo, Di, Pm
 B. Di, Mo, Fo, Aa, Pm
 C. Pm, Di, Mo, Fo, Aa
 D. Aa, Fo, Di, Mo, Pm

3. In an eolian sand aquifer, hydraulic conductivity would be expected to generally:
 A. increase upward
 B. increase downward
 C. be uniform
 D. be lowest in the middle of the unit

4. Which of the following pairs likely would be composed of sediments with DIFFERENT grain size and sorting characteristics?
 A. outwash plain–end moraine
 B. esker–kame
 C. tuff–tephra
 D. barchan dune–parabolic dune

5. It has been determined that a prospective strippable reserve contains 1000 acres (1 acre = 43,560 sq ft) of lignite in beds averaging 20 feet in thickness. Assume specific gravity of 1.28 (80 lbs/ft3). What is the reserve in tons?
 A. 362,880,000
 B. 3,484,800
 C. 6,696,600,000
 D. 34,848,000

6. The scale for describing the effects or damage caused by an earthquake at a given geographic location is called the:
 A. Bernoulli scale
 B. Richter scale
 C. Modified Mercalli scale
 D. Moment Magnitude scale
7. Which statement best describes the effect of diagenesis on the overall quality of an oil/gas reservoir?

A. Diagenesis enhances reservoir quality.
B. Diagenesis diminishes reservoir quality.
C. Diagenesis may enhance or diminish reservoir quality.
D. Diagenesis has little or no effect on reservoir quality.

8. Incipient lateral displacement across a narrow zone is often defined by the appearance of Riedel fractures on the ground. Two typical patterns of Riedel fractures are shown in Figure 24. With respect to the patterns shown:

A. A is right-stepping and indicates right lateral movement
B. B is left-stepping and indicates vertical movement
C. A is right-stepping and indicates left lateral movement
D. A and B are both right-stepping

9. The rate of production from a subsurface reservoir is most directly related to:

A. porosity
B. permeability
C. compactness
D. grain size

10. What is the best radiometric dating technique to determine the age difference between two Miocene-age volcanic ash deposits separated by 500 feet vertically?

A. Potassium-Argon
B. Carbon-Carbon
C. Uranium-Lead
D. Uranium-Thorium

11. What geophysical method would generally be most effective to map deeply buried (1500’ deep) bedrock pediments?

A. ground penetrating radar
B. electrical resistivity
C. seismic refraction
D. seismic reflection

12. A groundwater model is considered calibrated when:

A. the model grid and layers match the constructed conceptual model
B. the groundwater flux into the model equals the groundwater flux out of the model
C. hydraulic heads and fluxes reproduce the system modeled within an acceptable tolerance
D. the chosen model boundaries express the nature of the physical boundaries

13. A rock described as argillaceous:

A. contains flattened pebbles
B. contains abundant clay
C. contains abundant K-feldspar
D. Contains abundant muscovite
14. The creation of new oceanic crust is balanced by:

A. the Earth’s expansion
B. the Earth’s crust buckling up so the earth remains a constant size
C. an equal amount of old ocean crust being subducted
D. an equal amount of continental crust being subducted

15. When collecting duplicate samples to validate the quality of the laboratory results, the geologist should always:

A. identify the duplicate samples
B. use a sequential numbering system
C. be sure that the duplicates cannot be identified by the lab
D. be sure that the duplicates were sampled at different times

16. A stream crosses a strike-slip fault with no deviation in its course. Which of the following statements must be true?

A. The fault is active.
B. The stream crossed the fault since the last fault movement.
C. Strike-slip faults do not affect stream course.
D. Rock units are the same on both sides of the fault.

17. The horizontal scale of a cross-section is 1:24,000; the vertical scale is 1 inch equals 1000 feet. The vertical exaggeration is:

A. 2x
B. 12x
C. 24x
D. 0.5x

18. A topographic map shows several circular depressions in a limestone region. What are these features called?

A. fensters
B. kettles
C. sinkholes
D. potholes

19. A cross-stratified sand lens that contains thin streaks of mud in the ripple troughs is called:

A. lenticular bedding
B. wavy bedding
C. graded bedding
D. flaser bedding

20. In which of the following areas are the largest volumes of andesite lava commonly extruded?

A. along continental rift valleys
B. where oceanic lithosphere is subducting beneath continental crust
C. within oceanic plates overlying mantle plumes
D. along zones of lithosphere plate separation (oceanic ridges)
21. Which of the following Factor of Safety (FoS) values for slope stability shows that a slope is considered stable:
 A. between zero (0) and one (1)
 B. between zero (0) and minus one (-1)
 C. greater than one (1)
 D. less than minus one (-1)

22. The effects of pressure solution during diagenesis can be seen in:
 A. rip-ups
 B. flute marks
 C. mud interclasts
 D. stylolites

23. Limestones containing appreciable amounts of clay are represented graphically on a lithologic log by:
 A. using the standard limestone symbol
 B. modifying the limestone symbol by adding a short dash within each box
 C. modifying the limestone symbol by adding dots within each box
 D. modifying the limestone symbol from a rectangle to a parallelogram

24. You find that in developing a GIS product with several layers of information, there is an apparent conflict between the USGS topographic map completed in 1975 data layer and recently acquired geologic data layer information with GPS locational control, the problem is likely to be:
 A. the ARC/INFO software program is unable to handle scanned or digitized topography
 B. mistakes in the 1975 topographic map
 C. failure to make adjustments relative to the 1983 North American Datum (NAD)
 D. conflict between scanned and digitized information

25. An esker is a:
 A. more or less linear ridge formed at the end of a glacial advance
 B. streamlined glacial landform
 C. conical hill composed predominantly of sand and gravel
 D. sinuous ridge subparallel to glacial flow composed predominantly of sand and gravel

26. Biostratigraphic zones are employed to establish:
 A. continuity of formations
 B. age equivalence within sedimentary sequences
 C. absolute ages of successive formations
 D. sedimentary provenance active during deposition

27. What Liquid Limit (LL) and Plasticity Index (PI) values would be associated with a soil classified as a CH?
 A. LL = 12 and PI = 38
 B. LL = 63 and PI = 38
 C. LL = 63 and PI = 11
 D. LL = 40 and PI = 11
28. Lithostratigraphic sequences can be used to interpret:
A. geologic history
B. isolated outcrops
C. earthquake probability
D. absolute ages of successive formations

29. Which of the following anions is the least reactive and most persistent tracer of a geochemical contaminant plume?
A. CO$_3$ $^-$
B. HCO$_3$ $^-$
C. Cl$^-$
D. PO$_4$ $^{3-}$

30. The grain-size distribution curve illustrated in Figure 85 indicates that the sand is:
A. poorly sorted
B. poorly graded
C. uniformly sorted
D. well sorted

31. If the beds are vertical, Figure 29 represents what type of fault?
A. thrust fault
B. reverse fault
C. right-lateral fault
D. left-lateral fault

32. What is the approximate total volume of limestone which can be quarried from the property shown in Figure 83, if the mining extends to a depth of 350 feet?
A. 2,500,000 yd3
B. 4,500,000 yd3
C. 6,500,000 yd3
D. 8,500,000 yd3
33. If the net volume of precipitation entering a drainage basin exceeds the surface water volume coming out with no change in surface storage, then:
 A. water is recharging the groundwater system
 B. water is discharging from the groundwater system
 C. evapotranspiration rates have decreased
 D. groundwater storage remains constant because of loss of water to evapotranspiration

34. Which of the following is NOT commonly a natural constituent of groundwater?
 A. iron
 B. carbonate
 C. chloride
 D. nitrate

35. An uplifted block bounded by normal faults is known as a(n):
 A. atoll
 B. guyot
 C. graben
 D. horst

36. Your client calls you to sample a series of monitor wells that they installed on their property. Your review of the geologic setting determines that the wells are located such that no contamination could be detected. You should:
 A. notify the Board
 B. refuse the job
 C. inform the client about the problem
 D. sample the wells as requested

(continued on next page)
The Story of Corner Bay

Explorer Joe, Professor of History, Corner State University, Bay-Delta

Corner Bay is a unique angular bay along the western coast of the mainland that is best known as the first landing site for the early explorers to the country. Historical accounts tell of a major ship anchorage in the area that is now Cove Swamp. Limited archaeological/historical investigations have yielded numerous artifacts of not only the explorer’s use of the area, but evidence of early native marine activities. The prevailing weather pattern brings warm Maritime air masses over the lowlands which contribute 125 in/yr. of annual precipitation. By the time the air reaches the Running Ridges, annual rainfall has reduced to 45 in/yr. and at Glenn Peak Fire Station (elevation 4,678 ft.MSL) rainfall equals 34 in/yr. Evapotranspiration follows a similar pattern, being 98 in/yr. in the lowlands, 42 in/yr. at the Running Ridges and 29 in/yr. at Glenn Peak. Soils formed in the lowlands are classified as ultisols, while those formed on the slopes below Glenn Peak are alfisols. Land uses in the lowlands are characteristically tropical fruit production while those on the mountain slopes are grain crops and timber farming. The lowlands form a gentle plain that slopes toward the northeast at about 3% (3 ft/100ft grade). This gentle plain is backed by a series of rocky ridges that trend toward the northwest. A series of parallel ridges, known as the Running Ridges, forms the southeastern boundary of the lowlands. Numerous small streams that carry water to the Loop River have been dammed for the production of hydropower. Historical surveys in the region have located at least 7 abandoned grist mills on tributaries to Loop River from Running Ridges. Glenn Peak forms a dominating topographic backdrop to Corner Bay, with its rugged crags and bare rock spires. Glenn Peak is a world famous climbing mountain, known to be extremely difficult and dangerous to climb. Two streams draining from Glenn Peak have been dammed to provide hydropower for rock saws at a large quarry in the X-Ray Granite. The modern population center in Corner Bay, Bay-Delta, is a major international trade city and manufacturing center with the largest port facilities in the region. The geology of the region is given on the following page.

(continued on next page)
Appendix 3: FG Sample Questions and Answer Key

#### UNIT	DESCRIPTION
Unit B | **Beeswax Sandstone**- (Mississippian) well sorted, angular, quartz sandstone, very well cemented, massive with widely spaced fractures.
Unit D | **Dogtooth Formation**- interbedded gray to black shale and sandstone with occasional shell hash (clastic limestone) lenses.
Unit H | **Holiday Formation**- (Miocene to Recent) interbedded fluvial and tidal flat sands, silts and muds.
Unit M | **Midway Formation**- poorly sorted, angular to rounded, coarse to fine, quartz sandstone, moderately well cemented, normal sedimentary contact with Unit P above.
Unit P | **Pinkeye Mudstones**- (Jurassic) organic rich siltstone to clay beds with irregular linear coal seams, numerous tree fossils and petrified wood, becoming a marl at the top, grades into the Running Ridges Limestone above.
Unit R | **Running Ridges Limestone**- massive limestone composed of microscopic calcite crystals at the base grading upward into fossiliferous limestone containing large well preserved fossils at the top.
Unit S | **Singing Sands**- well sorted, rounded to well-rounded quartz sand, uncemented.
Unit X | **X-Ray Granite**- coarse crystalline, white, probably Precambrian
Unit Z | **Zebra Complex**- complex pink to gray, coarse crystalline, distinct but highly contorted bands of mafic (dark) minerals, weathers into complex irregular topography.
37. What is the correct stratigraphic column for the Corner Bay area (oldest on the bottom and youngest on the top):

A. XZ
B. ZX
C. SX
D. XS

38. Deep exploration holes drilled at the quarry in the X-Ray granite (Unit X) intersected the Running Ridges Limestone (Unit R). Based on this drill hole data, what is the best interpretation of the Unit R-Unit X contact?

A. normal fault
B. thrust fault
C. dextral fault
D. sinistral fault

39. The contact between the Holiday Formation (Unit H) and the Beeswax Sandstone (Unit B) is a(n):

A. fault contact
B. intrusive contact
C. normal stratigraphic
D. angular unconformity

40. The quarry located in the X-Ray Granite is a dimension stone quarry. This suggests that the X-Ray Granite

A. is massive and unfractured
B. is highly fractured
C. is deeply weathered
D. has closely spaced joint sets

FG Sample Items—Answer Key

© 2022 ASBOG
1. You have received a map from a client. You determine a 150-foot property line measures 3 inches on the map. You need a final scale at 1 inch = 20 feet (1:240). What percentage of enlargement or reduction is needed?
 A. 250% enlargement
 B. 250% reduction
 C. 500% enlargement
 D. 500% reduction

2. A remote sensing procedure that would be best suited for detecting temperature variations in buried karst terrain is:
 A. side looking airborne radar
 B. near-infrared photography
 C. false color infrared imagery
 D. long-wave infrared scanning imagery

3. The following measured section was made in a semiarid region where Tertiary volcanism has been extensive. The section is described from top (Unit 4) to bottom (Unit 1). What can be concluded about the origin of the soil horizon (Unit 4)?
 Unit 4: 1 ft Soil, red-brown, sandy, abundant quartz grains and red microcline, some quartz silt and montmorillonite (smectite).
 Unit 3: 20 ft Basalt, upper 2 ft weathered irregular and altering to clay with abundant vertical fissures filled with clay and residual soil. Rock is easily broken with a hammer, but becomes hard below 2 ft. About 3 ft below top and extending downward for 5 ft is a zone containing vesicles which at top are oriented nearly horizontal but at the base are essentially vertical. A representative sample taken from the unit indicates the following: Texture: aphanitic to porphyritic, uniform throughout. Mineralogy: 20% labradorite, lath-like crystals about 2 mm long; 10% hornblende, thin crystals about 3 mm long; 70% matrix, finely crystalline, not glassy.
 Unit 2: 5 ft Clay, silty, red, swells noticeably when wet, grades downward into rubble composed of fragments of weathered, dark gray granite.
 Unit 1: 15 ft Rock, dark gray, generally aphanitic texture, with very finely crystalline ground mass containing few crystals identified as microcline, biotite, and albite.

 The soil horizon (Unit 4), was derived from weathering:
 A. of Unit 3, in a humid climate
 B. of Unit 3, in a semiarid climate
 C. and transported from another source
 D. of another basalt flow

4. A small oil field is located on the crest of a large anticline. A regional reverse fault is mapped along the flank of the anticline. At shallow depths in five out of the twenty wells, faults intersected by the bore holes caused 100 to 200 feet of missing section. A reasonable interpretation of the structure is:
 A. normal faulting in a tensional setting
 B. reverse faulting in a compressional setting
 C. compressional faulting and folding followed by shallow normal faulting
 D. compressional faulting and folding followed by shallow reverse faulting
5. You are the geologist in responsible charge of designing a foundation exploration drilling program to be carried out in an area underlain by unconsolidated sediments containing large, granitic boulders. The site is known to be uncontaminated. Of the following, which would most likely be the fastest and most efficient drilling method?

A. solid-stem auger drilling
B. mud-rotary drilling
C. direct-push drilling
D. cable-tool drilling

6. Porosity and permeability are important in petroleum reservoir development. Choose the correct statement for a well sorted sandstone reservoir.

A. porosity is always permeable
B. smaller grain size usually means greater porosity and greater permeability
C. greater grain size usually means greater porosity and permeability
D. permeability is always present with porosity

7. What is the difference in orientation between a transverse and a longitudinal cross section of a structure such as an embankment?

A. A transverse section is perpendicular to the longest dimension of the structure and a longitudinal section is parallel to the longest dimension of a structure.
B. A transverse section is parallel to the longest dimension of the structure and a longitudinal section is perpendicular to the longest dimension of a structure.

8. You have been retained to identify the extent of groundwater contamination resulting from a truck rollover accident with a release of 1,000 gallons of trichloroethylene (TCE) two days ago. A large municipal well field, located about 1.5 miles from the accident site, produces groundwater from a carbonate aquifer. Regional stratigraphy, based on published sources and the well field stratigraphic logs, is characterized by: 0-20 ft below ground surface (bgs), unconsolidated sand and silty sand; 20-35 ft bgs, hard, blue-green clay; 35-100 ft bgs, weathered, fractured limestone. Water levels in the surficial aquifer are reported to be about 12 ft bgs. Monitoring wells installed at the accident site should be screened from:

A. 75-100 ft bgs
B. 5-15 ft bgs
C. 10-20 ft bgs
D. 15-40 ft bgs

9. In exploring a site for evidence of past surficial fault rupture, which of the following fault types is LEAST likely to be found in a 10-foot deep backhoe trench dug across a projected fault trace?

A. steeply dipping normal fault
B. shallowly dipping thrust fault
C. shallowly dipping blind thrust
D. steeply dipping reverse fault
10. Which of the following is NOT part of a RCRA subtitle D landfill closure and post-closure?
 A. groundwater monitoring
 B. installation and maintenance of a low permeability landfill cap
 C. constructing a contoured crest with slopes less than 5%
 D. limiting or controlling access

11. On large construction projects, aggregate for Portland cement concrete is often locally derived. You are the project geologist. There are two potential sources to be explored. One source is a rather pure quartzite with clean but moderately to widely spaced fractures. The other source contains abundant chert with closely to moderately spaced fractures, and some rhyolite with opaline fracture fillings. The cherty source is nearer to the project site and appears to be easier to develop. Time is critical. Without even the time to do a petrographic microscope examination of thin sections from artificially aged concrete samples from each aggregate source, which aggregate source should you recommend and why?
 A. The cherty source because it is easier to develop.
 B. The cherty source because haul distance is less.
 C. The quartzite source because the natural fracture spacing will make it easier to process the material.
 D. The quartzite source because of the potential for alkali-aggregate reaction from the cherty source.

12. Quality control is a(an):
 A. state-of-the-art industry standard designed to control appropriate inquiry into the reproducibility of test results.
 B. plan which details how a system shall function to assure that standards of quality are being met.
 C. prescribed set of activities that monitor and correct system functions to ensure quality standards are consistently being met.
 D. unbroken paper trail used to document the quality of procedures relating to a facility, project, or service from the cradle to the grave.

13. Which of the following compounds would NOT be found in an analysis of groundwater contaminated only by leaded gasoline?
 A. ethyl benzene
 B. tetra ethyl lead
 C. xylene
 D. methyl tertiary butyl ether

14. An oil well at elevation 9,575 ft., in the Desolation Formation, has been economically depleted. Management has decided to plug and abandon the well. Which of the following plugging procedures should be followed?
 A. The well should be cemented from total depth to ground surface.
 B. A granular bentonite plug should be placed over the production interval with a steel cap welded at the surface.
 C. At a minimum, the well should be sealed in compliance with the controlling agencies' requirements.
 D. A bridge plug should be set over the productive interval.
15. An alluvial aquifer is known to exist to a depth of 100 feet below ground surface (ft. bgs). The water table is 50 ft. bgs. The transmissivity of the aquifer has been determined to be 1,000 ft²/day. The slope of the water table is 0.001 ft/ft. What is the average Darcy velocity of groundwater movement?

A. 1.0 ft/day
B. 0.02 ft/day
C. 0.2 ft/day
D. 0.01 ft/day

16. You are the consulting geologist for the State Board of Facilities, reviewing the plans for a new administrative building. The architect proposes to use a coarse crystalline, dark gray rock containing exposed pyrite crystals as the exterior facade. You should FIRST:

A. approve the rock for the building
B. determine the rock strength properties
C. assess the weathering properties of the rock
D. assess the cost of the rock for this building

17. A sample of gold ore prepared as a standard reference is blended and carefully divided into 16 samples. One sample per month was sent to four different analytical laboratories for analysis, such that each laboratory analyzed a total of four samples.

The results of the analyses are given in the table and plotted on Figure 125:

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Month 1</th>
<th>Month 2</th>
<th>Month 3</th>
<th>Month 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>American</td>
<td>70.3</td>
<td>80.5</td>
<td>90.1</td>
<td>99.9</td>
</tr>
<tr>
<td>Brown</td>
<td>89.6</td>
<td>81.3</td>
<td>109.8</td>
<td>59.8</td>
</tr>
<tr>
<td>Continental</td>
<td>71.4</td>
<td>70.6</td>
<td>72.9</td>
<td>69.5</td>
</tr>
<tr>
<td>Delta</td>
<td>75.4</td>
<td>99.7</td>
<td>81.3</td>
<td>85.7</td>
</tr>
</tbody>
</table>

Based on these results, which laboratory is the most consistent?

A. American
B. Brown
C. Continental
D. Delta
18. Which suite of analytical parameters would you recommend to best monitor post-closure groundwater quality at a closed copper mining facility?
A. total dissolved solids (TDS), pH, 8 metals per Resource Conservation and Recovery Act (8 RCRA metals)
B. methane, pH, 8 RCRA metals, and total organic carbon (TOC)
C. methane, TDS, pH, and 8 RCRA metals
D. pH, 8 RCRA metals, total organic halides (TOX), and hydrogen sulfide

19. A placer gold deposit has been discovered at two sites in the outcrop of a paleochannel located in a region that has been tectonically deformed and metamorphosed. Further exploration for gold in this deposit should be based on an interpretation of the:
A. direction of channel flow prior to tectonic and metamorphic alteration
B. channel geometry within the altered terrain
C. tectonic history of the region
D. geochemical and mineralogical alteration caused by metamorphism

20. You have been asked to locate a public water supply well in a shallow, sand aquifer. Your locations are limited to three choices, all associated with land-use restrictions:
Site 1: 300 feet upgradient of a multi-acre, cattle feedlot.
Site 2: Centered in an established residential neighborhood with 1/2-acre unsewered lots.
Site 3: 1,000 feet upgradient from a newly developed industrial park.

In what order would you rank (best to worst) these three sites for installation of the new well?
A. 1, 3, 2
B. 3, 2, 1
C. 3, 1, 2
D. 1, 2, 3

21. A slow leak in the underground piping at a service station has resulted in a release of gasoline into the subsurface and the state environmental regulatory agency has been notified. The line has been repaired, all visually impacted soil in the immediate vicinity of the leak has been removed. A careful inventory reconciliation indicates that over time, up to 1,500 gallons of gasoline may have been lost. The water table is expected to occur 8 to 12 feet below ground surface. Which of the following actions should be taken FIRST?
A. Check for soil contamination and remove any additional contaminated soil.
B. Check for contamination dissolved in groundwater, and begin pump-and-treat remediation.
C. Check for the presence of free product, and begin recovery of free product.
D. Check for the presence of microbial population, and initiate enhancement of natural biodegradation.
22. With respect to Figure 103, the sequence A-D represents:
A. massive submarine slides
B. regression
C. transgression
D. lacustrine deposits

23. You will be mapping unconsolidated deposits for gravel exploration. Which method is LEAST appropriate for locating potential deposits?
A. aerial photography interpretation
B. analysis of surface resistivity measurements
C. magnetometry interpretation
D. test boring logging
24. You are conducting a soil geochemistry survey. There is a mineralized zone shown in Figure 54. The soil profile indicates the location of samples within the soil horizons developed in the area. The mineralized zone has elevated levels of Au, Ag, As, and Hg. Of the four possible sampling sites indicated, which one is the best choice to determine if concentrations of these metals have elevated values in the soil?

A. Sample 1
B. Sample 2
C. Sample 3
D. Sample 4
25. A tailings storage facility at an operating gold mine has been constructed using a starter dam. Annual precipitation in the area averages over 40 inches. No active faults are known in the immediate vicinity of the facility. Which monitoring program provides the highest degree of dam safety?

A. a seepage collection system that monitors see page volume and quality on a continuous basis for cyanide
B. network of groundwater wells constructed upgradient and downgradient of the facility to monitor groundwater quality and water levels on a quarterly basis
C. a combination of visual inspections of the facility on a weekly basis and monitoring of vibrating wire piezometers and survey monuments on a monthly basis, plus continuous monitoring of seepage in a seepage collection system
D. a visual monitoring program to inspect the tailings storage facility for seeps, settlement, and cracking on a weekly basis

26. You have identified a paleosol horizon that has developed on Ordovician bedrock that was originally deposited in a marine environment. The Ordovician rocks are unconformably overlain by a thin succession of Pennsylvanian coal-bearing strata. The Paleozoic succession is covered by glacial-related Quaternary deposits.

The age of the paleosol is:

A. Post-Ordovician to Pre-Pennsylvanian
B. Permian
C. Post-Pennsylvanian to pre-Quaternary
D. Cambrian

27. Important descriptive, NOT interpretive, seismic reflection patterns are:

A. cross-bedding and offshore bars
B. onlap and offlap
C. sequence boundaries and parasequence sets
D. transgressions and regressions

28. Which isotope dating is best to determine the age of a mid-Eocene tuff?

A. tritium-deuterium dating
B. uranium-lead dating
C. potassium-argon dating
D. carbon-carbon dating

29. The use of bentonite-cement grout to seal a monitor well results in a seal that is:

A. more permeable than a bentonite grout
B. more permeable than the sand pack
C. less susceptible to cracking than neat cement grout
D. more susceptible to failure than a bentonite grout above the water table
30. You are performing a geomorphological appraisal to identify fluvial hazards at the foundation site of a proposed bridge pier in a large perennial stream in mountainous terrain. The stream is entrenched in competent bedrock and is backfilled by an appreciable thickness of coarse alluvium and debris. Which of the following fluvial hazards has the greatest potential to affect the future integrity of the bridge and will receive the greatest attention during design development?

A. channel migration
B. channel bed scour during flooding
C. upstream nickpoint migration
D. channel aggradation

31. A client asked you to prepare a report describing the geologic constraints affecting the design and construction of a large underground structure. The client has limited your budget for exploration and you cannot be certain that the subsurface conditions exposed by borings are consistent across the site. You should:

A. avoid any reference to any possible condition that cannot be supported by your data.
B. describe the nature of your uncertainty along with possible consequences of your incomplete understanding of the subsurface conditions.
C. refuse to complete your report until the client agrees to fund the additional exploration you require.
D. structure the report to emphasize the probability that your data and conclusions are adequate, but use language that will limit your liability if different conditions are encountered during construction.